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Abstract— Image fusion is defined as the process of combining tw o or more different images into a new  single image retaining important 
features from each image w ith extended information content. There are two approaches to image fusion, namely Spatial Fusion and 
Transform fusion. In Spatial fusion, the pixel values from the source images are directly summed up and taken average to form the pixel of 

the composite image at that location. Transform fusion uses transform for representing the source images at multi scale. The most 
common w idely used transform for image fusion at multi scale is Wavelet Transform since it minimizes structural distortions. But, wavelet 
transform suffers from lack of shift invariance & poor directionality and Stationary Wavelet Transform and Wavelet Packet Transform 
overcome these disadvantages. The Multi-Wavelet Transform of image signals produces a non-redundant image representation, which 

provides better spatial and spectral localization of image formation than discrete wavelet transform. In this paper, Multi-Wavelet Transform, 
Stationary Wavelet Transform and Wavelet Packet Transform w ere combined to form Multi-Stationary Wavelet Packet Transform and its 
performance in fusion of multi-focused images in terms of Peak Signal to Noise Ratio, Root Mean Square Error, Quality Index and 
Normalized Weighted Performance Metric is presented. 

 

Index Terms—  Image Fusion, Mult i Wavelets, Stationary Wavelets, Wavelet Packets, Peak Signal to Noise ratio, Root Mean Square 

Error, Quality Index and Normalized Weighted Performance Metric. 
 

——————————      —————————— 
 

1. INTRODUCTION 

THE multi-sensor data in the field of remote sensing, 

medical imaging and machine vision may have multiple 
images of the same scene providing different information. In 
machine vision, due to the limited depth-of-focus of optical 
lenses in Charge Coupled Devices, it is not possible to have 
a single image that contains all the information of objects in 
the image. To achieve this, image fusion is required. Image 
fusion is defined as the process of combining two or more 
different images into a new single image retaining important 
features from each image with extended information 
content. For example, Infrared and visible images may be 
fused as an aid to pilots landing in poor weather or 
Computer Tomography and Magnetic Resonance Images 
may be fused as an aid to medical diagnosis or millimeter 
wave and visual images may be fused for concealed weapon 
detection or thermal and visual images may be fused for 
night vision applications [2].  
In remote sensing, the color information is provided by 
three sensors covering the red, green and blue spectral 
wavelengths. These sensors have a low number of pixels 
(low spatial resolution) and the small objects and details 
(cars, small lines, etc.) are hidden. Such small objects and 
details can be observed with a different sensor 
(panchromatic), which have a high number of pixels (high 
spatial resolution) but without color information. With a 
fusion process a unique image can be achieved containing 
both: high spatial resolution and color information [17].  
There are two approaches to image fusion, namely Spatial 
Fusion (SF) and Transform fusion (TF). In Spatial fusion, the 

pixel values from the source images are summed up and 
taken average to form the pixel of the composite image at 
that location [15]. Image fusion methods based on Multi 
scale Transforms (MST) are a popular choice in recent 
research [16]. MST fusion uses Pyramid Transform (PT) or 
Discrete Wavelet Transform (DWT) for representing the 
source image at multi scale. PT methods construct a fused 
pyramid representation from the pyramid representations of 
the original images. The fused image is then obtained by 
taking an inverse PT [18].  
Due to the disadvantages of PT, which include blocking 
effects and lack of flexibility, approaches based on DWT 
have begun [16]. DWT approach uses area level maximum 
selection rule and a consistency verification step. But, DWT 
suffers from lack of shift invariance and poor directionality. 
One way to avoid these disadvantages is to use Dual Tree 
Complex Wavelet Transform (DTCWT), which is most 
expensive, computationally intensive, and approximately 
shift invariant [6-13]. But, the un-decimated DWT, namely 
Stationary Wavelet Transform (SWT) is shift invariant and 
Wavelet Packet Transform (WPT) provides more 
directionality. This benefit comes from the ability of the 
WPT to better represent high frequency content and high 
frequency oscillating signals in particular. The Multi 
Wavelet Transform (MWT) of image signals produces a non-
redundant image representation, which provides better 
spatial and spectral localization of image formation than 
DWT. This paper presents the performance of Multi-
Stationary Wavelet Packet Transform in multi-focused 
image fusion in terms of Peak Signal to Noise Ratio (PSNR), 
Root Mean Square Error (RMSE), Quality Index (QI) and 
Normalized Weighted Performance Metric (NWPM). 
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2. WAVELET TRANSFORM THEORY 

Wavelet theory and wavelet analysis is a relatively recent 
branch of mathematics. Alfred Haar developed the first 
wavelet in 1909. The Haar wavelet belongs to the group of 
wavelets known as Daubechies wavelets, which are named 
after Ingrid Daubechies, who proved the existence of 
wavelet families whose scaling functions have certain useful 
properties, namely compact support over an interval, at least 
one non vanishing moment, and orthogonal translates. 
Because of its simplicity, the Haar wavelet is useful for 
illustrating the basic concepts of wavelet theory but has 
limited utility in applications. The wavelet function (x) and 
scaling function (x) of Haar wavelet is presented in figure1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The wavelet and scaling function of Haar wavelet 
 
Various researchers further developed the concept of 
wavelets over the next half century but it was not until the 
1980's that the relationships between quadrature mirror 
filters, pyramid algorithms, and orthonormal wavelet bases 
were discovered, allowing wavelets to be applied in signal 
processing. Over the past decade, there has been an 
increasing amount of research into the applications of 
wavelet transforms to remote sensing, particularly in image 
fusion. It has been found that wavelets can be used to extract 
detail information from one image and inject it into another, 
since this information is contained in high frequencies and 
wavelets can be used to select a set of frequencies in both 
time and space. The resulting merged image, which can in 
fact be a combination of any number of images, contains the 
best characteristics of all the original images. 
Wavelets can be described in terms of two groups of 
functions: wavelet functions and scaling functions. It is also 
common to refer to them as families: the wavelet function is 
the ―mother‖ wavelet, the scaling function is the ―father‖ 
wavelet, and transformations of the parent wavelets are 
―daughter‖ and ―son‖ wavelets. Generally, a wavelet family 
is described in terms of its mother wavelet, denoted as (x). 
The mother wavelet must satisfy certain conditions to 
ensure that its wavelet transform is stably invertible [1]. 
These conditions are: 

 
 

The conditions specify that the function must be an element 
of L2(R), and in fact must have normalized energy, that it 
must be an element of L1(R), and that it have zero mean. The 
third condition allows the addition of wavelet coefficients 
without changing the total flux of the signal. Other 
conditions might be specified according to the application. 
For example, the wavelet function might need to be 
continuous, or continuously differentiable, or it might need 
to have compact support over a specific interval, or a certain 
number of vanishing moments. Each of these conditions 
affects the results of the wavelet transform. To apply a 
wavelet function, it must be scaled and translated. 
Generally, a normalization factor is also applied so that the 
daughter wavelet inherits all of the properties of the mother 
wavelet. A daughter wavelet a,b(x) is defined by the 
equation, 
 

 
 

Where a, b   ∈R and a ≠ 0; a is called the scaling or dilation 
factor and b is called the translation factor. In most practical 
applications it is necessary to place limits on the values of a 
and b. A common choice is a=2-j and b=2-jk, where j and k 
are integers. The resulting equation is 

 

 
 

This choice for dilation and translation factors is called a 
dyadic sampling [5]. Changing j by one corresponds to 
changing the dilation by a factor of two, and changing k by 
one corresponds to a shift of 2−j. Figure 2 uses the Haar 
wavelet to illustrate the relationship of daughter wavelets to 
the mother wavelet and the effect of varying dilation and 
translation for both the general equation and the dyadic 
equation.  
The mother wavelet is 1,0(x) in Fig. 2a and ψ0,0(x) in Fig. 2b. 
Non-integer values are used for j and k in one example in 
Fig. 2b to allow direct comparison with ψ0.5, 1.5(x) in Fig. 
2a. In discrete wavelet transforms, a scaling function, or 
father wavelet, is needed to cover the low frequencies. If the 
mother wavelet is regarded as a high pass filter then the 
father wavelet, denoted as ϕ (x), should be a low pass filter.  
To ensure that this is the case, it cannot have any vanishing 
moments. It is useful to specify that, in fact, the father 
wavelet have a zeroth moment, or mean, equal to one: 
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In mathematical terms, (x) is chosen so that the set {(x − k), k   
∈Z} forms an orthonormal basis for the reference space V0. 
A subspace Vj is spanned by x x k k Z j j k ( ) 2 (2 ), 1/ 2 ,  
Multi resolution analysis makes use of a closed and nested 
sequence of subspaces {Vj}, j   ∈Z,, which is dense in L2 (R): 
each subsequent subspace is at a higher resolution and 
contains all the subspaces at lower resolutions. Since the 
father wavelet is in V0, it, as well as the mother wavelet, can 
be expressed as linear combinations of the basis functions 
for V1,φ 1,k(x): 

 

 
 
 

The set  

 
then forms a basis for Wj, with Wj being the orthogonal 
complement to Vj and {Wj}j∈Z forming a basis for L2 (R).  

In practice, neither the scaling function nor the wavelet 
function is explicitly derived. Provided that the wavelet 
function has compact support, the scaling function is 
equivalent to a scaling filter and it is sufficient to determine 
the filter coefficients. The coefficients l k in Eq. (5) form this 
scaling, or low-pass, filter and the coefficients hk in Eq. (6) 
form the wavelet, or high-pass, filter To ensure that a signal 
can be exactly reconstructed from its decomposition, the 
scaling coefficients and wavelet coefficients must form a 
quadrature mirror filter. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Mother wavelets and Daughter Wavelets 

a. Daughter Wavelets according to equation 2 
b. Daughter Wavelets according to equation 3 

 

3. DISCRETE WAVELET TRANSFORM 

Wavelet transforms provide a framework in which a signal 
is decomposed, with each level corresponding to a coarser 
resolution, or lower frequency band. There are two main 
groups of transforms, continuous and discrete. Discrete 
transforms are more commonly used and can be subdivided 
in various categories. Although a review of the literature 
produces a number of different names and approaches for 
wavelet transformations, most fall into one of the following 
three categories: decimated, un-decimated, and non-
separated. A continuous wavelet transform is performed by 
applying an inner product to the signal and the wavelet 
functions. The dilation and translation factors are elements 
of the real line. For a particular dilation a and translation b, 
the wavelet coefficient Wf (a,b) for a signal f can be 
calculated as 

 

 
Wavelet coefficients represent the information contained in a 
signal at the corresponding dilation and translation. The 
original signal can be reconstructed by applying the inverse 
transform: 

 

 
 

where Cψ is the normalization factor of the mother wavelet. 
Although the continuous wavelet transform is simple to 
describe mathematically, both the signal and the wavelet 
function must have closed forms, making it difficult or 
impractical to apply. 
The discrete wavelet is used instead. The term discrete 
wavelet transform (DWT) is a general term, encompassing 
several different methods. It must be noted that the signal 
itself is continuous; discrete refers to discrete sets of dilation 
and translation factors and discrete sampling of the signal. 
For simplicity, it will be assumed that the dilation and 
translation factors are chosen so as to have dyadic sampling, 
but the concepts can be extended to other choices of factors. 
At a given scale J, a finite number of translations are used in 
applying multi resolution analysis to obtain a finite number 
of scaling and wavelet coefficients. The signal can be 
represented in terms of these coefficients as 
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where cJk are the scaling coefficients and djk are the wavelet 
coefficients. The first term in Eq. (8) gives the low-resolution 
approximation of the signal while the second term gives the 
detailed information at resolutions from the original down 
to the current resolution J. The process of applying the DWT 
can be represented as a bank of filters, as in figure 3. In case 
of a 2D image, a single level decomposition can be 
performed resulting in four different frequency bands 
namely LL, LH, HL and HH sub band and an N level 
decomposition can be performed resulting in 3N+1 different 
frequency bands and it is shown in figure 3. At each level of 
decomposition, the image is split into high frequency and 
low frequency components; the low frequency components 
can be further decomposed until the desired resolution is 
reached.  
In practice when wavelet decomposition is used for image 
fusion, one level of decomposition can be sufficient, but this 
depends on the ratio of the spatial resolutions of the images 
being fused. The conventional DWT can be applied using 
either a decimated or an un-decimated algorithm. In the 
decimated algorithm, the signal is down sampled after each 
level of transformation. In the case of a two-dimensional 
image, down sampling is performed by keeping one out of 
every two rows and columns, making the transformed 
image one quarter of the original size and half the original 
resolution. The decimated algorithm can therefore be 
represented visually as a pyramid, where the spatial 
resolution becomes coarser as the image becomes smaller. 
The decimated algorithm is not shift-invariant, which means 
that it is sensitive to shifts of the input image. The 
decimation process also has a negative impact on the linear 
continuity of spatial features that do not have a horizontal or 
vertical orientation. These two factors tend to introduce 
artifacts when the algorithm is used in applications such as 
image fusion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. 2D-Discrete Wavelet Transform 

 

4. STATIONARY WAVELET TRANSFORM 

The Discrete Wavelet Transform is not a time- invariant 
transform. The way to restore the translation invariance is to 
average some slightly different DWT, called un-decimated 
DWT, to define the stationary wavelet transform (SWT). It 
does so by suppressing the down-sampling step of the 
decimated algorithm and instead up-sampling the filters by 
inserting zeros between the filter coefficients. Algorithms in 
which the filter is up sampled are called ―à trous‖, meaning 
―with holes‖. As with the decimated algorithm, the filters 
are applied first to the rows and then to the columns. In this 
case, however, although the four images produced (one 
approximation and three detail images) are at half the 
resolution of the original; they are the same size as the 
original image.  
The approximation images from the undecimated algorithm 
are therefore represented as levels in a parallelepiped, with 
the spatial resolution becoming coarser at each higher level 
and the size remaining the same. The undecimated 
algorithm is redundant, meaning some detail information 
may be retained in adjacent levels of transformation. It also 
requires more space to store the results of each level of 
transformation and, although it is shift-invariant, it does not 
resolve the problem of feature orientation. A previous level 
of approximation, resolution J−1, can be reconstructed 
exactly by applying the inverse transform to all four images 
at resolution J and combining the resulting images. 
Essentially, the inverse transform involves the same steps as 
the forward transform, but they are applied in the reverse 
order. In the decimated case, this means up-sampling the 
approximation and detail images and applying 
reconstruction filters, which are inverses of the 
decomposition scaling and wavelet filters, first by columns 
and then by rows. For example, first the columns of the 
Vertical Detail image would be up-sampled and the inverse 
scaling filter would be applied, then the rows would be up-
sampled and the inverse wavelet filter would be applied.  
The original image is reconstructed by applying the inverse 
transform to each deconstructed level in turn, starting from 
the level at the coarsest resolution, until the original 
resolution is reached. Reconstruction in the un-decimated 
case is similar, except that instead of up-sampling the 
images, the filters are down-sampled before each application 
of the inverse filters. Shift-invariance is necessary in order to 
compare and combine wavelet coefficient images. Without 
shift-invariance, slight shifts in the input signal will produce 
variations in the wavelet coefficients that might introduce 
artifacts in the reconstructed image. Shift-variance is caused 
by the decimation process, and can be resolved by using the 
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un-decimated algorithm. Let us recall that the DWT basic 
computational step is a convolution followed by decimation. 
The decimation retains even indexed elements. But choosing 
odd indexed elements instead of even indexed elements 
could carry out the decimation. This choice concerns every 
step of the decomposition process, so at every level we chose 
odd or even. 

If we perform all the different possible decompositions of 
the original signal, we have 2J different decompositions, for 
a given maximum level J. Let us denote by j = 1 or 0 the 
choice of odd or even indexed elements at step j. Every 
decomposition is labeled by a sequence of 0's and 1's: = 1, J. 
This transform is called the decimated DWT. It is possible to 
calculate all the decimated DWT for a given signal of length 
N, by computing the approximation and detail coefficients 
for every possible sequence. 
The SWT algorithm is very simple and is close to the DWT 
one. More precisely, for level 1, all the decimated DWT for a 
given signal can be obtained by convolving the signal with 
the appropriate filters as in the DWT case but without down 
sampling. Then the approximation and detail coefficients at 
level 1 are both of size N, which is the signal length. The 
general step j convolves the approximation coefficients at 
level j-1, with up sampled versions of the appropriate 
original filters, to produce the approximation and detail 
coefficients at level j. This can be visualized in the following 
figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 2D Stationary Wavelet Transform. 
 

5. MULTIWAVELET  TRANSFORM 

Multi wavelets are very similar to wavelets but have some 
important differences. In particular, whereas wavelets have 
an associated scaling function (t) and wavelet function (t), 
multiwavelets have two or more scaling and wavelet 
functions. For notational convenience, the set of scaling 
functions can be written using the vector notation  
(t) = [1(t) 2(t).  r (t)] T, where (t) is called the multi scaling 
function. Likewise, the multiwavelet function is defined 
from the set of wavelet functions as (t) = [1(t) 2(t) …. r (t)] T. 
When r = 1, (t) is called a scalar wavelet, or simply wavelet. 

While in principle r can be arbitrarily large, the 
multiwavelets studied to date are primarily for = 2. 

 
However, {Hk} and {Gk} are matrix filters, Hk and Gk are r x 
r matrices for each integer k. The matrix elements in these 
filters provide more degrees of freedom than a traditional 
scalar wavelet. These extra degrees of freedom can be used 
to incorporate useful properties into the multi wavelet 
filters, such as orthogonality, symmetry, and high order of 
approximation. The key is to figure out how to make the 
best use of these extra degrees of freedom. During a single 
level of decomposition using discrete wavelet transform, the 
2D image data is replaced with four blocks corresponding to 
the sub-bands representing either low pass or high pass 
filtering in each direction. The multi wavelet transform have 
two channels, so there will be two sets of scaling coefficients 
and two sets of wavelet coefficients. 
 

 
 
 
 
 
 
 
 
 

Figure 5. 2D Discrete and Multi Wavelet Transform 
 

6. 

DISCRETE WAVELET PACKET 

TRANSFORM 
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Figure 6. 2D – Wavelet Packet Transform 

 
DWT obtained by iterating a perfect reconstruction filter 
bank on its low pass output, decomposes a 2D image 
according to octave band frequency decomposition. The 
DWT is far from being shift invariant and does not provide a 
geometrically oriented decomposition in multiple directions. 
For an image, the frequency decomposition provided by the 
DWT might not be optimal.  
To find a more suitable decomposition, algorithms have 
been proposed to find the ―best-basis‖ from a structured 
dictionary of bases. For example, a best-basis algorithm that 
finds a sparse representation by minimizing the transform 
domain entropy and an algorithm that finds the best basis in 
a rate-distortion sense were proposed in the literature. One 
way to generalize the DWT so as to generate a structured 
dictionary of bases is given by the discrete wavelet packet 
transform. The DWPT is obtained by iterating a perfect 
reconstruction filter bank on both its low-pass and high-pass 
output. 
However, like the DWT, the DWPT is also shift-variant and 
mixes perpendicular orientations in multiple dimensions. In 
case of a 2D image, a single level decomposition can be 
performed resulting in four different frequency bands 
namely LL, LH, HL and HH sub band and an N level 
decomposition can be performed resulting in 4N different 
frequency bands and it is shown in figure 6. 

 

7. WAVELET BASED  IMAGE FUSION  
Wavelet transform is first performed on each source images, 
and then a fusion decision map is generated based on a set 
of fusion rules. The fused wavelet coefficient map can be 
constructed from the wavelet coefficients of the source 
images according to the fusion decision map.  
Finally the fused image is obtained by performing the 
inverse wavelet transform [2]. Let A (x, y) and B (x, y) are 
images to be fused, the decomposed low frequency sub 
images of A (x, y) and B (x, y) be respectively lAJ (x, y) and 
lBJ (x, y) ( J is the parameter of resolution) and the 

decomposed high frequency sub images of A (x,y) and 
B(x,y) are hAj k (x, y) and hBj k (x, y). ( j is the parameter of 
resolution and j=1,2,3….J forevery j, k=1,2,3..).  

Then, the fused high and low frequency subimages Fj k (x, 
y) are given as Fjk (x, y) = Aj k (x, y) if G(Aj k (x, y)) >= G(Bj 
k (x, y)), else Fj k (x, y) = Bj k (x, y) and FJ (x, y) = lAJ (x,y) if 
G(AJ (x, y)) >= G(BJ (x, y)), else FJ (x, y) = lBJ (x, y) where G 
is the activity measure and Fjk (x, y) & FJ (x, y) are used to 
reconstruct the fused image F (x, y) using the inverse 
wavelet transform. The block diagram representing the 
wavelet based image fusion is shown in figure 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure7. Wavelet Based Image Fusion. 
 

8. AREA LEVEL IMAGE FUSION 
This section describes six methods of area level image fusion 
based on multi scale representation of source images using 
wavelets. Since the useful features in the image usually are 
larger than one pixel, the pixel by pixel selection rule of 
pixel level fusion may not be the most appropriate method. 
In feature level of fusion algorithm, an area based selection 
rule is used. The images are first decomposed into sub bands 
using wavelet transform. Then the feature of each image 
patch over 3X3 or 5X5 window is computed as an activity 
measure associated with the pixel centered in the window. 
To simplify the description of different feature level image 
fusion methods, the source images are assumed as A & B 
and the fused image as F. All the methods described in this 
paper can be used in the case of more than two source 
images. 

 
Method1: The maximum value of coefficients of sub-bands 
of wavelet transformed image over 3X3 or 5X5 window is 
computed as an activity measure of pixel centered in the 
window. The coefficient having the larger activity measure 
is chosen to form the fused coefficients map. A binary 
decision map of same size as the wavelet transform is then 
created to record the selection results. This binary map is 
subject to consistency verification. Specifically in wavelet 
domain, if the centre pixel value comes from image A while 
the majority of the surrounding pixel values comes from 
image B, the centre pixel value should be switched to that 
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image B. This method is called consistency verification 
method. 
 
Method 2: In this method, the maximum absolute value over 
3X3 or 5X5 window is computed as an activity measure of 
pixel centered in the window. The coefficient whose activity 
measure is larger was chosen to form the binary decision 
map and the consistency verification is applied to form the 
fused coefficients map [16]. 
 
Method3: This fusion scheme is the weighted average 
scheme suggested by Burt and Kolezynski (1993). This 
salient features are first identified in each source image. This 
salience of a feature is computed as a local energy in the 
neighborhood of a coefficient. 

 
where w(q) is a weight and w(q)=1. In practice, the 
neighborhood Q is small (typically 5X5 or 3X3) window 
centered at the current coefficient position. The closer the 
point q is near the point P, the greater w(q) is E(B,p) can also 
be obtained by this rule. The selection mode is implemented 
as: 

 
This selection scheme helps to ensure that most of the 
dominant features are incorporated into the fused image. 
 
Method 4: In this fusion method, the salience measure of 
each source image is computed using Equation 13. At a 
given resolution level j, this fusion scheme uses two distinct 
modes of combination namely Selection and Averaging. In 
order to determine whether the selection or averaging will 
be used, the match measure M(p) is calculated as 

 
If M(p) is smaller than a threshold T, then the coefficient 
with the largest local energy is placed in the composite 
transform while the coefficient with less local energy is 
discarded. The selection mode is implemented as 

 
Else if M(p) ≥ T, then in the averaging mode, the combined 
transform coefficient is implemented as 

 

 
 

where,         

In this study, the fusion methods are implemented using the 
parameters such as a window size 3*3 and a T-value of 0.75.  
Method 5: For a function f (x,y) it is common practice to 
approximate the magnitude of the gradient by using 
absolute values instead of squares and square roots [14]: 

 
This equation is simpler to compute and it still preserves 
relative changes in grey levels. In image processing, the 
difference between pixel and its neighbors reflect the edges 
of the image. Firstly compute the difference between the low 
frequency coefficient at the point p and its eight neighbors, 
respectively. 
The value E is acquired by summing squares of all the 
differences. At last, choose the low frequency coefficient 
with the greater value E as the corresponding coefficient of 
the fused image. This method can maintain the information 
of edges. So it can improve the quality of the fused image. 
The algorithm is as follows. 

 
Finally, select the corresponding high frequency coefficient 

of the fused image. 

 
 

9. EVALUATION CRITERIA 
There are four evaluation measures are used, namely Root 
Mean Square Error (RMSE), Peak Signal to Noise Ratio 
(PSNR), Quality Index (QI)[4] and Normalized Weighted 
Performance Metric (NWPM) [3] which are given in the 
equations 18,19,20 & 21 respectively. 

 

 
 

where A and B are the input images, R is the reference 
image, F is the fused image, a is the average value of A, b is 
the average value of B, QAF(i,j) and QBF(i,j) are the edge 
preservation values. 

 

10. EXPERIMENTAL  WORK 
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Three pairs of source images namely Pepsi image of size 
512x512, Lab and Disk image of size 480 x 640 are taken. The 
pairs of source images to be fused are assumed to be 
registered spatially. The images are wavelet transformed 
using Haar in the first level decomposition and sym8 for the 
second level of decomposition. For taking the stationary 
wavelet transform of the two images, readily available 
MATLAB routines are taken. In each sub-band, individual 
pixels of the two images are compared based on the fusion 
rule that serves as a measure of activity at that particular 
scale and space. Taking pixels from the wavelet transform 
that shows greater activity at the level creates a fused 
wavelet transform. The inverse wavelet transform is the 
fused image with clear focus on the whole image. 

 

11. RESULTS 
For the above mentioned method, image fusion is performed 
using Multi Stationary Wavelet Packet Transform (MSWPT), 
its performance is measured in terms of Root Mean Square 
Errors, Peak Signal to Noise Ratio, Quality Index & 
Normalized Weighted Performance Metric and the results 
are shown in figure 8 and tabulated in table1 
 
12. CONCLUSION 
This paper presents the comparison of five types of area 
level of fusion of multi-focused images using MSWPT in 
terms of various performance measures. MSWPT provides 
very good results both quantitatively and qualitatively for 
area level fusion. Hence using these fusion methods, one can 
enhance the image with high geometric resolution. 
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